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SOMMARIO  

Viene descritto un modello numerico ai volumi finiti per la simulazione dei fenomeni di piena 
in reti di canali a pelo libero, anche in presenza di discontinuità del campo di moto quali quelle 
che si manifestano in presenza di fenomeni di propagazione su fondo asciutto o di risalto 
idraulico. La discretizzazione dei nodi avviene mediante l’uso di mesh non strutturate triangolari 
di forma qualsiasi. Vengono mostrati i risultati di alcuni test numerici, intesi a dimostrare la 
capacità del modello di risolvere in maniera fisicamente congruente le equazioni alle acque basse, 
che permettono la descrizione di tali fenomeni di propagazione. 

1. INTRODUZIONE 

La simulazione numerica delle modalità di  propagazione di onde di piena nelle reti di canali a 
pelo libero, naturali e artificiali, trova numerose applicazioni quali: la valutazione del rischio 
connesso all’inondazione di aree allagabili in conseguenza di eventi meteorici notevoli, o di 
improvvisa rottura di invasi artificiali; la verifica di reti urbane di drenaggio; la simulazione della 
propagazione di costituenti all’interno dei corsi d’acqua naturali; la valutazione degli effetti a 
breve, medio e lungo termine dovuti al trasporto solido. In letteratura sono disponibili numerosi 
tipi di modelli in grado di simulare fenomeni di propagazione in reti di canali a pelo libero, sia agli 
Elementi Finiti (Zhang, 2005), sia ai Volumi Finiti (Goutal , Maurel, 1999; Sanders et al., 2001) 
che alle Differenze Finite (Choi, Molinas, 1993), per citare solo alcuni tra quelli recentemente 
sviluppati. Specialmente il Metodo dei Volumi Finiti, assegnando dimensioni non nulle ai nodi di 
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intersezione tra i canali, e portando esplicitamente in conto la conservazione della massa e della 
quantità di moto in tali nodi, si presta a simulazioni affidabili e robuste anche nei casi in cui la 
geometria dell’intersezione e le sue dimensioni abbiano un effetto non trascurabile sul fenomeno 
di propagazione. Sono, pertanto, oggetto di attiva ricerca, metodi ai volumi finiti che consentano 
di portare in conto reti di canali a pelo libero comunque organizzate, costituite da una molteplicità 
di ingressi, e eventualmente di punti di uscita, anche connesse con corpi idrici bidimensionali, e 
nelle quali sia possibile riprodurre fenomeni quali la presenza di risalti, anche multipli, o di 
propagazione su fondo asciutto. Tanto premesso, nella presente memoria viene descritto un 
modello in grado di simulare questi fenomeni in reti di canali aventi forma del tutto generica, 
sebbene basata sul semplice schema di albero trivalente (vale a dire, da confluenze a “Y”), i cui 
tratti, cilindrici, a sezione rettangolare, sono collegati da nodi di forma e topografia qualsiasi (al 
limite, anche grandi corpi idrici bi-dimensionali). 

2. DESCRIZIONE DEL MODELLO NUMERICO 

In questo paragrafo vengono descritte le caratteristiche di un modello numerico ai volumi finiti 
in grado di approssimare la soluzione del sistema di Equazioni di bilancio della massa e della 
quantità di moto nelle reti di canali a pelo libero: l’accoppiamento delle soluzioni numeriche nei 
diversi canali della rete avviene tramite l’uso di un modello bi-dimensionale applicato in ognuno 
dei nodi. 

 

2.1 SOLUZIONE DELLE EQUAZIONI DI BILANCIO RELATIVE AI CANALI 

Si considerino le Equazioni di bilancio della massa e della quantità di moto, applicandole al 
caso di un canale cilindrico rettangolare privo di immissioni laterali: per convenienza, si continui a 
mantenere, nelle equazioni, la larghezza B dei canali, sebbene costante, senza semplificarla. Si ha, 
così, il seguente sistema di equazioni, scritto per ognuno dei canali che compongono la rete 
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Il significato dei simboli è il seguente: h =altezza di corrente; U =velocità media di portata; 
g =accelerazione di gravità; B =larghezza del canale; oS =pendenza del fondo del canale; 

fS =resistenze al moto per unità di peso. In particolare, detta bz la quota del fondo, la pendenza 

del fondo del canale è espressa come 
dx
dz

S b
o −= . Per esprimere le resistenze al moto, si fa 

riferimento alla classica formulazione alla Gauckler-Strickler, anche in condizioni di moto vario. 
Al fine di risolvere il sistema di equazioni formato dalle (1), si suddivide ognuno dei canali in N 
volumi di controllo (con N che può variare da canale a canale), l’i-esimo dei quali è compreso tra 
le sezioni trasversali poste alle ascisse 

2
1−i

x  e 
2

1+i
x . Integrando nello spazio in ognuno dei 

volumi di controllo, il sistema originario di equazioni differenziali iperboliche si trasforma nel 
seguente sistema di equazioni differenziali ordinarie (ODE = Ordinary Differential Equations) 
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dove si sono fatte le seguenti posizioni 
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In particolare, ih ha il significato di valore medio del tirante nell’i-esimo volume di controllo; 

iR  è il raggio idraulico; ihU  è il valore medio della quantità di moto nel medesimo volume di 

controllo; 
2

1+bi
z  è la quota del fondo (supposto privo di gradini) in corrispondenza 

dell’interfaccia tra le celle i-esima e (i+1)-esima; 
2

1+i
F
r

 ha il significato di flusso numerico tra i 

volumi di controllo i- e (i+1)-esimo: il flusso numerico non coincide, necessariamente, con uno 
dei due flussi fisici destro o sinistro ai due lati dell’interfaccia, e deve essere calcolato in maniera 
opportuna per tenere conto della possibilità di formazione di discontinuità nel campo di moto tra 
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un volume di controllo e l’altro. Si nota che l’approssimazione fatta per la valutazione dei termini 
sorgente è formalmente coerente con il secondo ordine di accuratezza spaziale dell’algoritmo. Per 
procedere alla soluzione del sistema di ODE (3), si fa uso di un procedimento di predizione e 
correzione, per eseguire il quale è necessario disporre di un’espressione dei flussi all’interfaccia 
tra le celle in funzione dei valori medi delle variabili conservate. Nel passo predittivo, non 
necessariamente conservativo, viene eseguita una predizione del valore delle variabili primitive a 
un istante intermedio ∗t rispetto ai due livelli temporali 1+nt e nt tra i quali ci si sta muovendo. A 

questo scopo viene preliminarmente effettuata, al fine di attingere precisione al secondo ordine 
nello spazio, la ricostruzione lineare delle variabili primitive tirante ih , velocità media di portata 
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controllo, approssimandone il gradiente. Tale gradiente deve essere limitato affinché sia inibita la 
nascita di massimi e minimi spuri in corrispondenza dell’interfaccia tra le celle, la cui crescita 
incontrollata può instabilizzare l’algoritmo. I gradienti limitati delle variabili primitive vengono 
calcolati con le formule 
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dove l’operatore modmin è definito come ( ) ( ) ( ) ( )babsignasignba ,min
2

,modmin +
= . 

Approssimati i gradienti limitati, la predizione viene effettuata in maniera non-conservativa a 
partire dalla forma quasi-lineare del sistema di equazioni differenziali originali: 
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Noti, in ognuna delle celle, i valori delle variabili primitive predette in corrispondenza del 
livello temporale intermedio ∗t , si fa ancora una volta uso dei gradienti limitati per ricostruite tali 
variabili primitive in corrispondenza dell’interfaccia tra le celle. Per esempio, in corrispondenza 
dell’interfaccia tra la cella i-esima e la cella (i+1)-esima, si ha 
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La ricostruzione della variabile primitiva h in corrispondenza dell’interfaccia tra le celle non 
avviene facendo uso diretto del gradiente limitato di h . Piuttosto, viene ricostruita la variabile 
quota di pelo liberoζ , cui viene sottratta la quota di fondo bz : questo procedimento è più 

accurato del primo, ed inoltre consente l’attingimento di soluzioni fisicamente congruenti in 
particolari condizioni quali quella di acqua in quiete (Zhao et al, 2001). In generale, le variabili 
primitive ricostruite ai due lati dell’interfaccia sono differenti, presentando una discontinuità, e di 
conseguenza  pure i flussi fisici sinistro L

iF 2/1+

r
 e destro R

iF 2/1+

r
 lo sono. Al fine di assicurare la 

conservazione dell’algoritmo anche nella forma discreta, il valore univoco del flusso da utilizzare 
nella soluzione numerica delle (3) può essere approssimato mediante la soluzione locale di un 
problema di Riemann (metodo di Godunov: Toro, 1997). In particolare, nella presente 
implementazione è stato adottato il solutore approssimato del problema di Riemann detto HLL 
(Batten et al., 1997), nel quale il flusso numerico intercella è funzione dei flussi fisici a cavallo 
dell’interfaccia, nonché delle celerità estreme sinistra Ls  e destra Rs  relative alla struttura delle 
onde che si originano dalla discontinuità:  
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La valutazione delle celerità estreme è stata eseguita secondo il procedimento di Fraccarollo e 
Toro (1995), al cui articolo si rimanda, e che permette di portare in conto, in maniera esplicita, 
anche il caso in cui il tirante in una delle cella a contatto con la discontinuità sia nullo. Finalmente, 
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ricostruite le variabili primitive predette ai lati di ogni intercella, e calcolati i flussi intercella 
corrispondenti, la variazione delle variabili conservate che si ha nel passare dal livello temporale 

nt al livello temporale ttt nn Δ+=+1  è valutata con l’equazione 
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e l’asterisco sta a indicare che i flussi e i termini sorgente sono stati calcolati facendo uso delle 
quantità predette. Come riportato in letteratura (Meselhe, Holly, 1993), nel caso di propagazione 
su fondo asciutto, in corrispondenza del fronte di bagnatura la soluzione numerica può presentare 
oscillazioni dovute al valore molto piccolo dei tiranti, che comportano un’esagerazione del valore 
della velocità e delle resistenze al moto. Allo scopo di ridurre gli effetti di questi fenomeni, i quali 
sono in grado di instabilizzare l’algoritmo, è utile definire un valore limite hε  del tirante, al di 

sotto del quale una cella deve essere considerata asciutta, e per la quale velocità U e quantità di 
moto hU sono nulle, come pure le resistenze al moto (Sanders, 2001). Tale limite, dipendente dal 
problema, è generalmente minore di 1 cm. 

 

2.2 SOLUZIONE DELLE SHALLOW-WATER EQUATIONS NEI NODI 

Nell’applicazione del Metodo dei Volumi Finiti alla soluzione del problema della 
propagazione di onde in reti a pelo libero, il nodo di confluenza tra più canali è supposto non 
puntuale, come viene fatto in altri approcci, ma di dimensioni finite, e composto da  un certo 
numero di volumi di controllo di forma opportuna. In letteratura sono fissati (Goutal, Maurel, 
1999; Sanders et al., 2001) sia la forma del nodo che il numero di volumi finiti (triangolari o 
quadrangolari) utilizzati per la sua discretizzazione. Nel modello qui descritto, l’operatore può 
costruire nodi della forma desiderata, insieme con la relativa discretizzazione in un numero 
qualsiasi N di volumi finiti di forma triangolare. Ciò comporta che più lati della maglia triangolare 
che costituiscono il nodo possano insistere sulla sezione di ingresso del medesimo canale (vedi 
Figura 1). Nei nodi viene risolto il sistema di equazioni  
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dove sono state fatte le seguenti posizioni 
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Il significato dei simboli usati è il seguente: h =altezza di corrente; U =componente, lungo 
l’asse x di un riferimento locale rispetto al nodo, della velocità mediata lungo la verticale; 
V =componente, lungo l’asse y, della velocità mediata lungo la verticale; oxS =componente, 

lungo x, della pendenza del fondo; oyS =componente, lungo y, della pendenza del fondo; 

fxS =componente, lungo x, delle resistenze al moto per unità di peso; fyS =componente, lungo y, 

delle resistenze al moto per unità di peso. In particolare, detta bz la quota del fondo, le 

componenti della pendenza sono espresse come 
x
z
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resistenze al moto, si fa  ancora l’ipotesi di potere utilizzare una formulazione alla Gauckler-
Strickler. 

 
Figura 1 - Nodo discretizzato con mesh triangolare, e canali 

 
In questo caso, l’applicazione del Metodo dei Volumi Finiti al generico elemento triangolare 

della mesh con la quale il nodo è stato discretizzato conduce al seguente sistema di ODE 
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In particolare, nell’equazione (17), ( )Tiiii hVhUhU =
r

è il vettore del valore medio 

delle variabili conservate all’interno della cella i-esima, di area iΩ . Detta jT una opportuna 

matrice di rotazione, UTU j

rr
=' è il vettore delle variabili conservate in un riferimento ortogonale 

i cui  assi coordinati jx' e jy' sono rispettivamente normale e parallelo al j-esimo lato del volume 

finito, mentre 'F
r

è uguale al vettore F
r

calcolato in 'U
r

. I flussi all’interfaccia tra le celle possono 
essere calcolati con un solutore approssimato del problema di Riemann (in questo caso viene fatto 
uso di HLLC, per tenere conto dell’esistenza della discontinuità di contatto oltre che delle 
discontinuità estreme: Toro, 1997), considerando il problema locale uni-dimensionale 
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Anche nel caso del modello bi-dimensionale si fa uso di un metodo di predizione-correzione, 
in  cui la predizione viene effettuata attraverso un passo non-conservativo, seguita dal passo 
correttivo di correzione che, invece, è conservativo. L’attingimento del secondo ordine per 
l’accuratezza nello spazio avviene, anche in questo caso, previa valutazione dei gradienti limitati 
nelle celle, e successiva ricostruzione delle variabili primitive in corrispondenza dell’interfaccia 
tra le celle. Per maggiori informazioni, si può utilmente fare riferimento a Cozzolino e Pianese 
(2005). L’accoppiamento dei modelli uni-e bi-dimensionale avviene proiettando le variabili 
ricostruite nel canale lungo gli assi del riferimento O’x’y’ locale all’interfaccia tra volume di 
controllo appartenente al nodo e volume di controllo appartenente al canale, e quindi risolvendo il 
problema locale uni-dimensionale aumentato definito dall’equazione (13). 

3. TEST NUMERICI EFFETTUATI 

Al fine di validare il modello numerico proposto, è stato eseguito un certo numero di test 
numerici, utili per valutare la capacità del modello stesso di fornire soluzioni fisicamente 
congruenti in circostanze quali quelle che possono verificarsi usualmente nelle reti di canali a pelo 
libero, anche nei casi in cui non siano disponibili soluzioni analitiche. 

 

3.1 TEST 1: ZHANG (2005) 

Il primo test presentato fa riferimento a un sistema formato da tre canali, di pendenza pari a 
0.0002 m/m, coefficiente di Strickler pari a 40 m1/3/s, lunghezza pari a 5000 m, formanti una sorta 
di Y. I due canali di monte, tra loro uguali, cilindrici, di sezione rettangolare, hanno larghezza pari 
a 50 m, mentre il canale di valle, cilindrico, di sezione rettangolare, ha larghezza pari a 100 m. Nel 
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sistema, la condizione iniziale è quella di moto uniforme, con portata nei due canali di monte pari 
a 50 m3/s, e di 100 m3/s nel canale di valle: queste condizioni corrispondono a condizioni di moto 
uniforme, per cui a valle del sistema viene imposto un tirante pari a 1.43 m. A partire dall’istante 
t=0, nei due canali di monte vengono introdotti due idrogrammi triangolari, con portata che varia 
da 50 a 150 m3/s in 2000 s, per poi ritornare alle condizioni iniziali ancora in 2000 s. 
L’intersezione tra i tre canali è stata modellata con un nodo di forma esagonale, non regolare, 
composto da 24 celle triangolari, il cui fondo è orizzontale, e la cui scabrezza è la stessa di quella 
dei canali. I canali sono stati, poi, suddivisi ognuno in 100 volumi di controllo di uguale 
lunghezza. 

In Figura 2 viene mostrato il confronto tra i risultati forniti dal modello numerico proposto nel 
presente lavoro, e il modello agli elementi finiti presentato da Zhang (2005). E’ possibile notare 
una generale corrispondenza tra i risultati forniti dai due modelli: tuttavia, il modello ai volumi 
finiti qui presentato mostra una certa laminazione del colmo di piena (3 m3/s su 163 m3/s) rispetto 
al modello agli elementi finiti. Tale differenza può essere motivata in ragione del differente 
trattamento che nei due modelli si ha per le condizioni al contorno “interne”, ossia per le 
condizioni che in corrispondenza dei nodi permettono di accoppiare tra di loro i sistemi di 
equazioni risolti in corrispondenza dei canali: su tali condizioni al contorno interne influiscono le 
dimensioni e la forma effettivamente assegnati al nodo, nonché l’angolo che formano tra di loro 
gli assi dei canali confluenti. 

 

 
Figura 2 - Test1: Idrogramma a x=4000 m nel canale di valle. 

 

3.2 TEST 2: PROPAGAZIONE SU FONDO ASCIUTTO E RISALTO 

Il test qui presentato, che permette di mostrare, insieme, diverse caratteristiche del modello, 
quali la propagazione su fondo asciutto, il corretto trattamento di discontinuità nel campo di moto 
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quali risalti, e la presenza di zone con acqua in quiete, fa ancora riferimento a un sistema 
consistente in tre canali, uguali, di pendenza 0.01 m/m,  coefficiente di Strickler pari a 55 m1/3/s, 
lunghezza 100 m, larghezza 1 m, formanti una Y. La condizione iniziale corrisponde a quella di 
canali inizialmente asciutti. A partire dall’istante t=0 viene introdotto, nel primo dei canali di 
monte (Canale 1) una portata pari a Q1=0.3 m3/s, la quale permane indefinitamente, mentre non 
avviene alcun ingresso nel secondo canale di monte (Canale 2). Ognuno dei canali è stato 
suddiviso in 100 volumi di controllo di uguali dimensioni, mentre l’intersezione tra i canali è stata 
modellata con un nodo a forma di esagono regolare, il cui fondo è piano, e la cui scabrezza è la 
stessa di quella dei canali. 

 

 
Figura 3 - Test2: Profili di corrente al raggiungimento delle condizioni stazionarie. 

 
Al raggiungimento di condizioni stazionarie il profilo di corrente ottenuto lungo i diversi 

canali è quello mostrato in Figura 3, ove è rappresentata la porzione di sistema immediatamente a 
cavallo del nodo, del quale sono state trascurate le dimensioni per esigenze grafiche. Come si può 
osservare, la corrente veloce proveniente da monte, con caratteristiche idrauliche corrispondenti a 
quelle del moto uniforme, deve passare in lenta poco prima di introdursi nel nodo, formando un  
risalto, per poi tornare in veloce nel canale di valle (Canale 3), dove vengono rapidamente 
ricostituite le condizioni di moto uniforme. E’ interessante osservare (Figura 4) come, nel nodo, si 
debba formare una circolazione piuttosto complessa per permettere che la corrente proveniente dal 
Canale 1 venga deviata verso il Canale 3. In particolare nel nodo, completamente invaso dalla 
corrente, si individua la formazione di un filone principale di corrente che si muove verso l’uscita 
(Canale 3) dall’ingresso posto in alto a sinistra (Canale 1), mentre in corrispondenza dell’altro 
ingresso (Canale 2) la corrente è praticamente stagnante. 
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Figura 4 - Test2: Andamento della quota di pelo libero, e vettori velocità nel nodo. 

4. CONCLUSIONI 

E’ stato presentato un modello numerico ai volumi finiti, accurato al secondo ordine nel tempo 
e nello spazio, per la simulazione di fenomeni di piena in reti di canali a pelo libero, sia naturali 
che artificiali, il quale è in grado di portare in conto sia la propagazione di onde di piena su fondo 
asciutto, sia condizioni di moto transcritiche. Il modello numerico fa uso di un solutore 
approssimato del problema di Riemann, al fine di valutare i flussi di massa e di quantità di moto 
all’interfaccia tra i volumi di controllo. Particolare cura è stata posta nel trattamento dei termini 
sorgente, al fine di garantire l’attingimento di soluzioni fisicamente congruenti anche nel caso di 
acqua in quiete in parte o nella totalità della rete a pelo libero. Al fine di accoppiare tra di loro i 
sistemi di equazioni alle acque basse scritte nella loro forma uni-dimensionale in ognuno dei 
canali, i nodi di confluenza sono stati modellati tramite un opportuno modello ai volumi finiti su 
griglia non strutturata triangolare, risolvente il sistema di equazioni alle acque basse nella loro 
forma bi-dimensionale. Il modello numerico è stato validato mediante una serie di test numerici, 
dei quali sono stati presentati alcuni risultati, e che ne hanno permesso di valutare l’idoneità nella 
simulazione di fenomeni di piena in circostanze quali quelli che possono verificarsi nel mondo 
reale. Al momento, il modello numerico fa uso esclusivamente di sezioni trasversali di forma 
rettangolare in canali cilindrici: è prevista, nell’immediato futuro, l’estensione al caso di sezione 
trasversale di forma qualsiasi e per alvei non cilindrici. 
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