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SOMMARIO

Viene descritto un modello numerico ai volumi finiti per la simulazione dei fenomeni di piena
in reti di canali a pelo libero, anche in presenza di discontinuita del campo di moto quali quelle
che si manifestano in presenza di fenomeni di propagazione su fondo asciutto o di risalto
idraulico. La discretizzazione dei nodi avviene mediante 1I’uso di mesh non strutturate triangolari
di forma qualsiasi. Vengono mostrati i risultati di alcuni test numerici, intesi a dimostrare la
capacita del modello di risolvere in maniera fisicamente congruente le equazioni alle acque basse,
che permettono la descrizione di tali fenomeni di propagazione.

1. INTRODUZIONE

La simulazione numerica delle modalita di propagazione di onde di piena nelle reti di canali a
pelo libero, naturali e artificiali, trova numerose applicazioni quali: la valutazione del rischio
connesso all’inondazione di aree allagabili in conseguenza di eventi meteorici notevoli, o di
improvvisa rottura di invasi artificiali; la verifica di reti urbane di drenaggio; la simulazione della
propagazione di costituenti all’interno dei corsi d’acqua naturali; la valutazione degli effetti a
breve, medio e lungo termine dovuti al trasporto solido. In letteratura sono disponibili numerosi
tipi di modelli in grado di simulare fenomeni di propagazione in reti di canali a pelo libero, sia agli
Elementi Finiti (Zhang, 2005), sia ai Volumi Finiti (Goutal , Maurel, 1999; Sanders et al., 2001)
che alle Differenze Finite (Choi, Molinas, 1993), per citare solo alcuni tra quelli recentemente
sviluppati. Specialmente il Metodo dei Volumi Finiti, assegnando dimensioni non nulle ai nodi di
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intersezione tra i canali, e portando esplicitamente in conto la conservazione della massa e della
quantita di moto in tali nodi, si presta a simulazioni affidabili e robuste anche nei casi in cui la
geometria dell’intersezione e le sue dimensioni abbiano un effetto non trascurabile sul fenomeno
di propagazione. Sono, pertanto, oggetto di attiva ricerca, metodi ai volumi finiti che consentano
di portare in conto reti di canali a pelo libero comunque organizzate, costituite da una molteplicita
di ingressi, e eventualmente di punti di uscita, anche connesse con corpi idrici bidimensionali, e
nelle quali sia possibile riprodurre fenomeni quali la presenza di risalti, anche multipli, o di
propagazione su fondo asciutto. Tanto premesso, nella presente memoria viene descritto un
modello in grado di simulare questi fenomeni in reti di canali aventi forma del tutto generica,
sebbene basata sul semplice schema di albero trivalente (vale a dire, da confluenze a “Y”), i cui
tratti, cilindrici, a sezione rettangolare, sono collegati da nodi di forma e topografia qualsiasi (al
limite, anche grandi corpi idrici bi-dimensionali).

2. DESCRIZIONE DEL MODELLO NUMERICO

In questo paragrafo vengono descritte le caratteristiche di un modello numerico ai volumi finiti
in grado di approssimare la soluzione del sistema di Equazioni di bilancio della massa e della
quantita di moto nelle reti di canali a pelo libero: I’accoppiamento delle soluzioni numeriche nei
diversi canali della rete avviene tramite I’uso di un modello bi-dimensionale applicato in ognuno
dei nodi.

2.1 SOLUZIONE DELLE EQUAZIONI DI BILANCIO RELATIVE Al CANALI

Si considerino le Equazioni di bilancio della massa e della quantita di moto, applicandole al
caso di un canale cilindrico rettangolare privo di immissioni laterali: per convenienza, si continui a
mantenere, nelle equazioni, la larghezza B dei canali, sebbene costante, senza semplificarla. Si ha,
cosl, il seguente sistema di equazioni, scritto per ognuno dei canali che compongono la rete

B gF _gs )

ot OX

avendo fatto le seguenti posizioni

u=[ "} F hZhU S °
hu g +hu’ gh(s, -s, ) @
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II significato dei simboli & il sequente: h =altezza di corrente; U =velocita media di portata;
g =accelerazione di gravita; B =larghezza del canale; S, =pendenza del fondo del canale;

S =resistenze al moto per unita di peso. In particolare, detta Z, la quota del fondo, la pendenza

dz

del fondo del canale & espressa come S, = —d—b. Per esprimere le resistenze al moto, si fa
X

riferimento alla classica formulazione alla Gauckler-Strickler, anche in condizioni di moto vario.
Al fine di risolvere il sistema di equazioni formato dalle (1), si suddivide ognuno dei canali in N
volumi di controllo (con N che pud variare da canale a canale), I’i-esimo dei quali & compreso tra

le sezioni trasversali poste alle ascisse X, y e XHy. Integrando nello spazio in ognuno dei
/2 2

volumi di controllo, il sistema originario di equazioni differenziali iperboliche si trasforma nel
seguente sistema di equazioni differenziali ordinarie (ODE = Ordinary Differential Equations)

du, - = <
BA, —=-B|F , - F BAX;S;; 1=12,..,N
X; o [ Y .}/2}“ XS, 1=12,..., ®3)

dove si sono fatte le seguenti posizioni

_ h. 1 Xis1/2 h . 0
U =l "' |=— dx; S. =
' (huij AX; '[ (hU] b Sa =Sy

' Xi1/2

Z. — 7. 2
S . :_ghiw; S, = ghi (hU)i (hU)i

; AX, ' k2hRr |

4)

AX: =X ., —X
! |+% |—%

In particolare, h, ha il significato di valore medio del tirante nell’i-esimo volume di controllo;
R; ¢ il raggio idraulico; hU; ¢ il valore medio della quantita di moto nel medesimo volume di

controllo; an}/ e la quota del fondo (supposto privo di gradini) in corrispondenza
2

dell’interfaccia tra le celle i-esima e (i+1)-esima; Ifny ha il significato di flusso numerico tra i
2

volumi di controllo i- e (i+1)-esimo: il flusso numerico non coincide, necessariamente, con uno
dei due flussi fisici destro o sinistro ai due lati dell’interfaccia, e deve essere calcolato in maniera
opportuna per tenere conto della possibilita di formazione di discontinuita nel campo di moto tra
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un volume di controllo e Ialtro. Si nota che I’approssimazione fatta per la valutazione dei termini
sorgente & formalmente coerente con il secondo ordine di accuratezza spaziale dell’algoritmo. Per
procedere alla soluzione del sistema di ODE (3), si fa uso di un procedimento di predizione e
correzione, per eseguire il quale € necessario disporre di un’espressione dei flussi all’interfaccia
tra le celle in funzione dei valori medi delle variabili conservate. Nel passo predittivo, non
necessariamente conservativo, viene eseguita una predizione del valore delle variabili primitive a

un istante intermedio t, rispetto ai due livelli temporali . e t tra i quali ci si sta muovendo. A

questo scopo viene preliminarmente effettuata, al fine di attingere precisione al secondo ordine
nello spazio, la ricostruzione lineare delle variabili primitive tirante hi , velocita media di portata

U, =hU, /h, e quota di pelo libero{; = h, + 0.5(Zbi+y + Zbi_y), all’interno dei volumi di
2 2

controllo, approssimandone il gradiente. Tale gradiente deve essere limitato affinché sia inibita la
nascita di massimi e minimi spuri in corrispondenza dell’interfaccia tra le celle, la cui crescita
incontrollata pud instabilizzare I’algoritmo. | gradienti limitati delle variabili primitive vengono
calcolati con le formule

(’3_{ — min mod §i+1_ i ’ i _é/i—l

ox i Xia =X Xj = Xiy

Y _ minmod| Lra=Ys ,U‘ —Yis ®)
ox ). Xig =X X=Xy

E " B E " B Zbi+% _Zbi—%

X ). ox ). AX;

dove I’operatore min mod ¢ definito come min mod(a, b) = Mminﬂaﬂ, b]).

Approssimati i gradienti limitati, la predizione viene effettuata in maniera non-conservativa a
partire dalla forma quasi-lineare del sistema di equazioni differenziali originali:

h' =hr 058U+ h Y
OX OX

Ui* =U" —0.5At Ua—u+ ga—§+Sf
OX OX
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Noti, in ognuna delle celle, i valori delle variabili primitive predette in corrispondenza del
livello temporale intermediot, , si fa ancora una volta uso dei gradienti limitati per ricostruite tali

variabili primitive in corrispondenza dell’interfaccia tra le celle. Per esempio, in corrispondenza
dell’interfaccia tra la cella i-esima e la cella (i+1)-esima, si ha

- A . . au )
hiy. =<7 +0.5AX, x | ~Zy02s Uiy, =U; +0.5Ax, ™ i
_ o Q)
. o¢ * ouU
hiiuz =Gy —0.9AX | —= ~ Zpisa/2 UiFil/z =U;,; —0.5A%| —
ax i+1 ax i+1

La ricostruzione della variabile primitiva h in corrispondenza dell’interfaccia tra le celle non
avviene facendo uso diretto del gradiente limitato di h. Piuttosto, viene ricostruita la variabile

quota di pelo libero& , cui viene sottratta la quota di fondo Z,: questo procedimento & piu

accurato del primo, ed inoltre consente I’attingimento di soluzioni fisicamente congruenti in
particolari condizioni quali quella di acqua in quiete (Zhao et al, 2001). In generale, le variabili
primitive ricostruite ai due lati dell’interfaccia sono differenti, presentando una discontinuita, e di

. e g e e e . =L =R . . .
conseguenza pure i flussi fisici sinistro F,.;,, e destro F.};,, lo sono. Al fine di assicurare la

conservazione dell’algoritmo anche nella forma discreta, il valore univoco del flusso da utilizzare
nella soluzione numerica delle (3) pud essere approssimato mediante la soluzione locale di un
problema di Riemann (metodo di Godunov: Toro, 1997). In particolare, nella presente
implementazione & stato adottato il solutore approssimato del problema di Riemann detto HLL
(Batten et al., 1997), nel quale il flusso numerico intercella & funzione dei flussi fisici a cavallo
dell’interfaccia, nonché delle celerita estreme sinistra S, e destra Sy relative alla struttura delle

onde che si originano dalla discontinuita:

=L
s, 20=F,
- sqFl, =S FR,, +5.8 (U.R ~ut )
Fi+1/2: SL<0<SR = R" i+1/2 L' i+1/2 RYL i+1/2 i+1/2
Sp =S,

®)

=R
Sp <0=Fiy

La valutazione delle celerita estreme & stata eseguita secondo il procedimento di Fraccarollo e
Toro (1995), al cui articolo si rimanda, e che permette di portare in conto, in maniera esplicita,
anche il caso in cui il tirante in una delle cella a contatto con la discontinuita sia nullo. Finalmente,
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ricostruite le variabili primitive predette ai lati di ogni intercella, e calcolati i flussi intercella
corrispondenti, la variazione delle variabili conservate che si ha nel passare dal livello temporale
t,al livello temporale t,,, =t + At ¢ valutata con I’equazione

B(U)in+l _Uin ): _BAA_):[Fi:uz - 'Eiiuz]"' B§i* )

e I’asterisco sta a indicare che i flussi e i termini sorgente sono stati calcolati facendo uso delle
quantita predette. Come riportato in letteratura (Meselhe, Holly, 1993), nel caso di propagazione
su fondo asciutto, in corrispondenza del fronte di bagnatura la soluzione numerica puo presentare
oscillazioni dovute al valore molto piccolo dei tiranti, che comportano un’esagerazione del valore
della velocita e delle resistenze al moto. Allo scopo di ridurre gli effetti di questi fenomeni, i quali
sono in grado di instabilizzare I’algoritmo, € utile definire un valore limite &, del tirante, al di

sotto del quale una cella deve essere considerata asciutta, e per la quale velocita U e quantita di
moto hU sono nulle, come pure le resistenze al moto (Sanders, 2001). Tale limite, dipendente dal
problema, & generalmente minore di 1 cm.

2.2 SOLUZIONE DELLE SHALLOW-WATER EQUATIONS NEI NODI

Nell’applicazione del Metodo dei Volumi Finiti alla soluzione del problema della
propagazione di onde in reti a pelo libero, il nodo di confluenza tra piu canali & supposto non
puntuale, come viene fatto in altri approcci, ma di dimensioni finite, e composto da un certo
numero di volumi di controllo di forma opportuna. In letteratura sono fissati (Goutal, Maurel,
1999; Sanders et al., 2001) sia la forma del nodo che il numero di volumi finiti (triangolari o
quadrangolari) utilizzati per la sua discretizzazione. Nel modello qui descritto, I’operatore pud
costruire nodi della forma desiderata, insieme con la relativa discretizzazione in un numero
qualsiasi N di volumi finiti di forma triangolare. Cid comporta che piu lati della maglia triangolare
che costituiscono il nodo possano insistere sulla sezione di ingresso del medesimo canale (vedi
Figura 1). Nei nodi viene risolto il sistema di equazioni

oU oF oG =
—+—+—=9 (10)
ot ox oy

dove sono state fatte le seguenti posizioni
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h hU .2 hv 0
U=|hU|F= hU2+g? :G=| huv X 'S = oh(S,, —S5) (11)
hv huv hV 2 + g? gh(SOY o Sfy

Il significato dei simboli usati & il sequente: h =altezza di corrente; U =componente, lungo
I’asse x di un riferimento locale rispetto al nodo, della velocita mediata lungo la verticale;
V =componente, lungo I’asse y, della velocita mediata lungo la verticale; S, =componente,

lungo x, della pendenza del fondo; SOy =componente, lungo y, della pendenza del fondo;

S, =componente, lungo x, delle resistenze al moto per unita di peso; Sfy =componente, lungo v,

delle resistenze al moto per unita di peso. In particolare, detta Z,la quota del fondo, le
0z, 0z,

componenti della pendenza sono espresse come S, = _8_ e Soy = ——— . Per esprimere le
X

resistenze al moto, si fa ancora I’ipotesi di potere utilizzare una formulazione alla Gauckler-
Strickler.

vy

Figural - Nodo discretizzato con mesh triangolare, e canali

In questo caso, I’applicazione del Metodo dei Volumi Finiti al generico elemento triangolare
della mesh con la quale il nodo € stato discretizzato conduce al seguente sistema di ODE
dUI 3 -1 = , -~ -
Q,—1=->T'B,F,'+Q;S; 12.i.,N (12)
Pt | R ii

j=1
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In particolare, nell’equazione (17), U, =(h, hU, hV,) & il vettore del valore medio

delle variabili conservate all’interno della cella i-esima, di areaC2;. Detta TJ- una opportuna

matrice di rotazione, lj': T-U ¢ il vettore delle variabili conservate in un riferimento ortogonale
]

i cui assi coordinati X'j e y'j sono rispettivamente normale e parallelo al j-esimo lato del volume

finito, mentre Fe uguale al vettore F calcolato in U". I flussi all’interfaccia tra le celle possono
essere calcolati con un solutore approssimato del problema di Riemann (in questo caso viene fatto
uso di HLLC, per tenere conto dell’esistenza della discontinuita di contatto oltre che delle
discontinuita estreme: Toro, 1997), considerando il problema locale uni-dimensionale

ou' oF'
— 4+ =0 (13)
ot ox

Anche nel caso del modello bi-dimensionale si fa uso di un metodo di predizione-correzione,
in cui la predizione viene effettuata attraverso un passo non-conservativo, seguita dal passo
correttivo di correzione che, invece, & conservativo. L’attingimento del secondo ordine per
I’accuratezza nello spazio avviene, anche in questo caso, previa valutazione dei gradienti limitati
nelle celle, e successiva ricostruzione delle variabili primitive in corrispondenza dell’interfaccia
tra le celle. Per maggiori informazioni, si pud utilmente fare riferimento a Cozzolino e Pianese
(2005). L’accoppiamento dei modelli uni-e bi-dimensionale avviene proiettando le variabili
ricostruite nel canale lungo gli assi del riferimento O’x’y’ locale all’interfaccia tra volume di
controllo appartenente al nodo e volume di controllo appartenente al canale, e quindi risolvendo il
problema locale uni-dimensionale aumentato definito dall’equazione (13).

3. TEST NUMERICI EFFETTUATI

Al fine di validare il modello numerico proposto, € stato eseguito un certo numero di test
numerici, utili per valutare la capacita del modello stesso di fornire soluzioni fisicamente
congruenti in circostanze quali quelle che possono verificarsi usualmente nelle reti di canali a pelo
libero, anche nei casi in cui non siano disponibili soluzioni analitiche.

3.1 TEST 1: ZHANG (2005)

Il primo test presentato fa riferimento a un sistema formato da tre canali, di pendenza pari a
0.0002 m/m, coefficiente di Strickler pari a 40 m**/s, lunghezza pari a 5000 m, formanti una sorta
di Y. I due canali di monte, tra loro uguali, cilindrici, di sezione rettangolare, hanno larghezza pari
a 50 m, mentre il canale di valle, cilindrico, di sezione rettangolare, ha larghezza pari a 100 m. Nel
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sistema, la condizione iniziale ¢ quella di moto uniforme, con portata nei due canali di monte pari
a 50 m¥/s, e di 100 m%/s nel canale di valle: queste condizioni corrispondono a condizioni di moto
uniforme, per cui a valle del sistema viene imposto un tirante pari a 1.43 m. A partire dall’istante
t=0, nei due canali di monte vengono introdotti due idrogrammi triangolari, con portata che varia
da 50 a 150 m%s in 2000 s, per poi ritornare alle condizioni iniziali ancora in 2000 s.
L’intersezione tra i tre canali & stata modellata con un nodo di forma esagonale, non regolare,
composto da 24 celle triangolari, il cui fondo & orizzontale, e la cui scabrezza é la stessa di quella
dei canali. | canali sono stati, poi, suddivisi ognuno in 100 volumi di controllo di uguale
lunghezza.

In Figura 2 viene mostrato il confronto tra i risultati forniti dal modello numerico proposto nel
presente lavoro, e il modello agli elementi finiti presentato da Zhang (2005). E’ possibile notare
una generale corrispondenza tra i risultati forniti dai due modelli: tuttavia, il modello ai volumi
finiti qui presentato mostra una certa laminazione del colmo di piena (3 m*/s su 163 m®/s) rispetto
al modello agli elementi finiti. Tale differenza pud essere motivata in ragione del differente
trattamento che nei due modelli si ha per le condizioni al contorno “interne”, ossia per le
condizioni che in corrispondenza dei nodi permettono di accoppiare tra di loro i sistemi di
equazioni risolti in corrispondenza dei canali: su tali condizioni al contorno interne influiscono le
dimensioni e la forma effettivamente assegnati al nodo, nonché I’angolo che formano tra di loro
gli assi dei canali confluenti.

80
165
% // \ —modello proposto
g ¥ // \ — Zhang (2005)
120
s / \\\\
’ 0 000 10000 t(s) 15000 0000 25000
Figura2 -  Testl: Idrogramma a x=4000 m nel canale di valle.

3.2 TEST 2: PROPAGAZIONE SU FONDO ASCIUTTO ERISALTO

Il test qui presentato, che permette di mostrare, insieme, diverse caratteristiche del modello,
quali la propagazione su fondo asciutto, il corretto trattamento di discontinuita nel campo di moto
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quali risalti, e la presenza di zone con acqua in quiete, fa ancora riferimento a un sistema
consistente in tre canali, uguali, di pendenza 0.01 m/m, coefficiente di Strickler pari a 55 m**/s,
lunghezza 100 m, larghezza 1 m, formanti una Y. La condizione iniziale corrisponde a quella di
canali inizialmente asciutti. A partire dall’istante t=0 viene introdotto, nel primo dei canali di
monte (Canale 1) una portata pari a Q;=0.3 m%s, la quale permane indefinitamente, mentre non
avviene alcun ingresso nel secondo canale di monte (Canale 2). Ognuno dei canali & stato
suddiviso in 100 volumi di controllo di uguali dimensioni, mentre I’intersezione tra i canali € stata
modellata con un nodo a forma di esagono regolare, il cui fondo € piano, e la cui scabrezza ¢ la
stessa di quella dei canali.

Quota fondo f————
—— Canale1

Canale2
.......... ST — - --Canalel

0.8

0.4 . . . . : :
80 85 90 95 100 105 110 115 120
% (m)

Figura3 -  Test2: Profili di corrente al raggiungimento delle condizioni stazionarie.

Al raggiungimento di condizioni stazionarie il profilo di corrente ottenuto lungo i diversi
canali & quello mostrato in Figura 3, ove ¢ rappresentata la porzione di sistema immediatamente a
cavallo del nodo, del quale sono state trascurate le dimensioni per esigenze grafiche. Come si puo
osservare, la corrente veloce proveniente da monte, con caratteristiche idrauliche corrispondenti a
quelle del moto uniforme, deve passare in lenta poco prima di introdursi nel nodo, formando un
risalto, per poi tornare in veloce nel canale di valle (Canale 3), dove vengono rapidamente
ricostituite le condizioni di moto uniforme. E’ interessante osservare (Figura 4) come, nel nodo, si
debba formare una circolazione piuttosto complessa per permettere che la corrente proveniente dal
Canale 1 venga deviata verso il Canale 3. In particolare nel nodo, completamente invaso dalla
corrente, si individua la formazione di un filone principale di corrente che si muove verso I’uscita
(Canale 3) dall’ingresso posto in alto a sinistra (Canale 1), mentre in corrispondenza dell’altro
ingresso (Canale 2) la corrente e praticamente stagnante.

10
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Conale 2

Conole 3

Figura4 -  Test2: Andamento della quota di pelo libero, e vettori velocita nel nodo.

4. CONCLUSIONI

E’ stato presentato un modello numerico ai volumi finiti, accurato al secondo ordine nel tempo
e nello spazio, per la simulazione di fenomeni di piena in reti di canali a pelo libero, sia naturali
che artificiali, il quale ¢ in grado di portare in conto sia la propagazione di onde di piena su fondo
asciutto, sia condizioni di moto transcritiche. 1l modello numerico fa uso di un solutore
approssimato del problema di Riemann, al fine di valutare i flussi di massa e di quantita di moto
all’interfaccia tra i volumi di controllo. Particolare cura € stata posta nel trattamento dei termini
sorgente, al fine di garantire I’attingimento di soluzioni fisicamente congruenti anche nel caso di
acqua in quiete in parte o nella totalita della rete a pelo libero. Al fine di accoppiare tra di loro i
sistemi di equazioni alle acque basse scritte nella loro forma uni-dimensionale in ognuno dei
canali, i nodi di confluenza sono stati modellati tramite un opportuno modello ai volumi finiti su
griglia non strutturata triangolare, risolvente il sistema di equazioni alle acque basse nella loro
forma bi-dimensionale. Il modello numerico ¢ stato validato mediante una serie di test numerici,
dei quali sono stati presentati alcuni risultati, e che ne hanno permesso di valutare I’idoneita nella
simulazione di fenomeni di piena in circostanze quali quelli che possono verificarsi nel mondo
reale. Al momento, il modello numerico fa uso esclusivamente di sezioni trasversali di forma
rettangolare in canali cilindrici: & prevista, nell’immediato futuro, I’estensione al caso di sezione
trasversale di forma qualsiasi e per alvei non cilindrici.
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